

FINAL REPORT

To

The Florida Department of Transportation

Research Office

On Project

"Development of Automated Testing Tools for Traffic

Control Signals and Devices"

FDOT Contract Number BDK83-977-08

June 30, 2012

By

Leonard J. Tung

Department of Electrical and Computer Engineering

FAMU-FSU College of Engineering, Florida State University

ii

DISCLAIMER

The opinions, findings, and conclusions expressed in this publication are those of the authors

and not necessarily those of the State of Florida Department of Transportation.

iii

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle

Development of Automated Testing Tools for Traffic Control
Signals and Devices

5. Report Date

June 30, 2012

6. Performing Organization Code

7. Author(s)

Leonard J. Tung
8. Performing Organization Report No.

9. Performing Organization Name and Address

Florida State University
Tallahassee, FL 32306

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

BDK83-977-08
12. Sponsoring Agency Name and Address

Florida Department of Transportation
605 Suwannee St. MS 30
Tallahassee, Florida 32399

13. Type of Report and Period Covered

Final Report

14. Sponsoring Agency Code

15. Supplementary Notes

Prepared in cooperation with the USDOT and FHWA

16. Abstract

Through a coordinated effort among the electrical engineering research team of the Florida State

University (FSU) and key Florida Department of Transportation (FDOT) personnel, an automated

testing system for National Electrical Manufacturers Association (NEMA) TS2 Type-1 Actuated Signal

Controller (ASC) has been developed and constructed.

The system developed consists of the following:

A laptop with proper ports and software,

A Personal Computer Memory Card International Association (PCMCIA) card by Quatech,

A device for the interface between an ASC and the Quatech card,

A total of 20 automated testing programs covering all the functionalities of an ASC,

An executable C# Windows Console application to execute all the automated testing programs:

ASCAutoTester.exe,

A user manual for the automated ASC testing system, and

A compact disk (CD) containing all program codes and documents of the project

17. Key Word

ASC, Automated Testing Programs, Python
scripting language, Alternative NTCIP Testing
Software (ANTS)

18. Distribution Statement

No Restriction

19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

48
22. Price

iv

ACKNOWLEDGEMENTS

The authors would like to express their sincere appreciation to Jeffrey M. Morgan, Carl A.

Morse, and Derek J. Vollmer of the Florida Department of Transportation for the guidance

and support that they provided on this project.

v

EXECUTIVE SUMMARY

The lack of an adequate testing system has hampered the efforts of key personnel at the

Florida Department of Transportation (FDOT) to conduct comprehensive testing of Actuated

Signal Controllers (ASC) submitted by various manufacturers/vendors for certification. The

objective of the project is to design and implement an automated testing system for efficient,

thorough, and accurate testing of ASCs.

Through a coordinated effort among the electrical engineering research team of the Florida

State University (FSU) and key Florida Department of Transportation (FDOT) personnel, an

automated testing system for National Electrical Manufacturers Association (NEMA) TS2

Type-1 ASC has been developed and constructed.

 The system developed consists of the following:

A laptop with proper ports and software,

A Personal Computer Memory Card International Association (PCMCIA) card by

Quatech,

A device for the interface between an ASC and the Quatech card,

A total of 20 automated testing programs covering all the functionalities of an ASC,

An executable C# Windows Console application to execute all the automated testing

programs: ASCAutoTester.exe,

A user manual for the automated ASC testing system, and

A compact disk (CD) containing all program codes and documents of the project

The automated testing system is somewhat manufacturer dependent due to the discrepancies

among the manufacturers in their interpretations of many of the ASC specifications. The

development and the eventual adoption of National Transportation Communications for ITS

(Intelligent Transportation Systems) Protocol (NTCIP) have demonstrated the possibility of

an NTCIP based autonomous testing system that is manufacturer independent. Additional

work is needed to develop a manufacturer independent autonomous testing system that

combines the Automated Testing System developed in this project and previous NTCIP test

procedures developed at FDOT Traffic Engineering Research Lab (TERL).

This report contains an evaluation of the McCain-NIATT Controller Interface Device (CID

II) Hardware in the Loop research project final report and the Automated ASC Testing

Device User Manual developed during the current research project. Other material developed

during the current research project such as project administration files and ASC automated

software can be found on the accompanying CD (in HTML web format) or via the projects

web site at: http://eng.fsu.edu/~tung/terl/index.htm

http://eng.fsu.edu/~tung/terl/index.htm

vi

TABLE OF CONTENTS

I. Introduction .. 1

I.1. Background ... 1

I.2. Research Objectives and Supporting Tasks ... 1

II. Literature Review .. 3

III. Areas of Work and Scope .. 4

IV. Results and Products ... 6

V. Conclusion .. 8

Appendix A .. 10

Appendix B .. 15

vii

LIST OF TABLES

Table 1: Areas of Work and Scope ... 4

Table 2: Results and Products ... 6

viii

LIST OF FIGURES

Figure 1: Quatech PCMCIA Card Drivers CD ... 17
Figure 2: Econolite Controller .. 18
Figure 3: Front View of the Automated Testing Interface Unit ... 18
Figure 4: Rear View of the Automated Testing Interface Unit .. 19
Figure 5: Quatech PCMCIA SDLC Card ... 19

Figure 6: Screenshot of Windows Command Prompt to Begin the Test 20
Figure 7: Set-Up of the Testing Equipment with an ASC .. 20
Figure 8: Screenshot of the Subdirectory ASC_Automated_Tests... 21
Figure 9: Screenshot Listing the Various Tests .. 22
Figure 10: Screenshot indicating the status of “Program Is Now Running” 22

Figure 11: Screenshot Indicating the Completion of the Chosen Test 23
Figure 12: Screenshot of a Report Generated by the Minimum Green Phase Timing Test ... 24

Figure 13: Screenshot of a Report Generated by the Minimum Green Phase Timing Test with

Fails ... 25

Figure 14: Screenshot of a Single Min/Max Phase Timing Test .. 25
Figure 15: Screenshot of a Report Generated by the Minimum Red Phase Timing Test 26

Figure 16: Screenshot of the Vehicle Call Coordination Test .. 26
Figure 17: Screenshot of a Report Generated by the Vehicle Call Coordination Test 27
Figure 18: Screenshot of the Pedestrian Call Coordination Test .. 27

Figure 19: Screenshot of a Report Generated by the Pedestrian Call Coordination Test 28
Figure 20: Screenshot of the Preemption Call Coordination Test .. 28

Figure 21: Screenshot of a Report Generated by the Preemption Call Coordination Test 29
Figure 22: Screenshot of the Preemption Priority Test ... 29
Figure 23: Screenshot of a Report Generated by the Preemption Call Coordination Test 30

Figure 24: Screenshot of the ASC Flash Test ... 30

Figure 25: Screenshot of a Report Generated by the ASC Flash Test 31
Figure 26: Screenshot of the Overlap Configuration Test .. 31
Figure 27: Screenshot of a Report Generated by the Overlap Configuration Test 32

Figure 28: Screenshot of the Channel Mapping Test.. 32
Figure 29: Screenshot of a Report Generated by the Channel Mapping Test 33

Figure 30: Screenshot of the Flashing Yellow Test .. 33
Figure 31: Screenshot of a Report Generated by the Flashing Yellow Test 34
Figure 32: Screenshot of the Stop Time Test.. 34
Figure 33: Screenshot of a Report Generated by the Stop Time Test 35

Figure 34: Screenshot of the ASC Phase Startup Test .. 35
Figure 35: Screenshot of a Report Generated by the ASC Phase Startup Test....................... 35
Figure 36: Screenshot of the Coordination Test ... 36

Figure 37: Screenshot of a Report Generated by the Coordination Test 36

ix

LIST OF ABBREVIATIONS

Abbreviation Full Description

AC Alternating Current

ANTS Alternative NTCIP Testing Software

APL Approved Product List

ASC Actuated Signal Controller

ATIU Automated Testing Interface Unit

CD Compact Disc

CID Controller Interface Device

CORSIM Corridor Simulation

COTS Commercial-off-the-shelf

DC Direct Current

EW East-West bound

FDOT Florida Department of Transportation

FSU Florida State University

HILSCI Hardware in the Loop (Simulator) Component Integrator

ITS Intelligent Transportation Systems

MMU Malfunction Management Unit

NEMA National Electrical Manufacturers Association

NIATT National Institute for Advanced Transportation Technology

NS North-South bound

NTCIP National Transportation Communications for ITS Protocol

PC Personal Computer

PCMCIA Personal Computer Memory Card International Association

PED Pedestrian

PI Principal Investigator

RTF Rich Text Format

SDLC Synchronous Data Link Control protocol

TERL Traffic Engineering Research Lab

TRF Train Simulator Traffic Pattern Format

TSIS Traffic Software Integrated System

1

I. Introduction

I.1. Background

The Florida Department of Transportation (FDOT) is required by State law (Section

316.0745, F.S.) to develop and publish specifications for traffic control signals and traffic

control devices and certify devices that meet these specifications before they are allowed

to be sold or purchased as part of a traffic control system within the state of Florida. To

fulfill this requirement, the FDOT Traffic Engineering and Operations Office, Traffic

Engineering Research Lab (TERL) develops specifications and performs operational

testing to certify devices submitted by product manufacturers that are in compliance with

published FDOT specifications.

One common traffic control device submitted by manufacturers that requires testing is the

Actuated Signal Controller (ASC), referred to hereafter as “traffic signal controller.” The

traffic signal controller is basically a microcomputer located at the intersection that

processes various inputs and triggers outputs that control traffic signals, pedestrian

signals, and other electronic devices that comprise a signalized intersection.

Because the traffic signal controller is designed to accommodate a wide variety of

intersection types, ranging from simple to extremely complex, the configurable nature of

the traffic signal controller makes testing the device a particularly challenging and time

consuming exercise. Comprehensive testing of the traffic signal controller requires the

device to be manually operated and monitored in a consistent and controlled fashion over

a long period of time. Recent National Transportation Communications for ITS

(Intelligent Transportation Systems) Protocol (NTCIP) requirements have only increased

the complexity of testing these devices. The TERL is able to perform reasonably effective

cursory reviews of fundamental traffic signal controller features; however, it is not

practical to conduct more thorough and comprehensive testing manually on each traffic

signal controller received for evaluation due to the intensive and time consuming nature

of these tests.

A handful of commercial testing tools are marketed for these purposes, but first-hand

trials of these products by the TERL have uncovered a number of shortcomings that

prevent them from being viable for the purposes of certification testing.

Due to the above limitations, testing of the traffic signal controller is being performed in

a labor-intensive, somewhat ad-hoc manner. This research activity is being proposed to

overcome these limitations by developing a set of automated test procedures and test

tools that would yield efficient, consistent and effective results in a timely manner.

I.2. Research Objectives and Supporting Tasks

The main objective of this project is to produce a set of procedures and tools that can be

used to perform automated testing of ASC against FDOT technical requirements. The

2

pass/fail results of testing each requirement will be the basis for accepting or rejecting

products submitted for listing on the FDOT Approved Product List (APL).

To achieve this objective, the following tasks are anticipated:

 Research and review of past efforts applicable to this project.

 Research, review, and selection of existing Commercial-off-the-shelf (COTS)

products required for this project.

 System requirements development.

 System design and design reviews.

 System implementation.

 System testing and validation.

 Implementation of production test environment.

 Documentation.

 Training.

3

II. Literature Review

Among the effort in the development of automated testing tools for ASC, the most cited

publication is the work done at National Institute for Advanced Transportation

Technology (NIATT). The automated testing tool developed by Zhen Li et al at NIAFF

[1], would make it possible for the design and implementation of an automated testing

system for ASC. The tool developed by Li et al requires a controller interface device

(CID) installed between a host testing computer and an ASC. After the evaluation of the

NIATT CID (CID II) was completed, it was determined that such a CID without the

capability of supporting SDLC (Synchronous Data Link Control) protocol would not be

adequate for the development of a fully automated testing system capable of a

comprehensive testing of ASC (Appendix A). To ensure the success of the design and

implementation of such an automated testing system, researchers decided that effort

would be focused on NEMA TS2 Type-1 ASC with NTCIP requirements [2].

4

III. Areas of Work and Scope

The key areas of work alongside their scopes are listed in Table 1.

Table 1: Areas of Work and Scope

Area of Work Scope

Research and review

of past efforts

applicable to this

project.

These tasks are expected to include, but not be limited to,

gaining familiarity with Florida's existing specification for

traffic signal controllers, the configuration and operation of

traffic signal controllers, the NTCIP standards related to this

effort (i.e.: NTCIP 1202, 1201, 8007, etc.), the current tools and

development environments used within the TERL, and other

background information gathering that may be necessary.

Research, review, and

selection of existing

Commercial-off-the-

shelf (COTS)

products required for

this project.

These tasks are expected to include, but not be limited to,

investigating, identifying, and procuring hardware and software

to support the project work. This project will require some

computer hardware and software. Computer hardware and

software should conform to current FDOT standards insofar as

practical.

System requirements

development.

The Principal Investigator (PI) and his staff will be responsible

for identifying FDOT user needs and developing a detailed

requirements document that captures the expected operational

functionality of the automated testing system in accordance

with system engineering best practices. These requirements

will then guide the design and implementation of the automated

testing system.

System design and

design reviews.

The PI and his staff will be responsible for creating flow charts,

pseudo code, and other documentation detailing the high and

low level concepts of the system. The team will be responsible

for modifying these designs as the project progresses to reflect

the actual operation of the system.

System

implementation.

The PI and his staff will be responsible for implementing the

system as outlined in the design phase. This will include, but

not be limited to, producing code to interface the test software

with the Hardware in the Loop device, modify existing scripts

currently written for the test software to utilize the interface

with the Hardware in the Loop device, and create new test

procedures and scripts to thoroughly test the functionality of the

traffic signal controller. All test procedures created shall follow

the format outlined in NTCIP 8007.

System testing and

validation.

The PI and his staff will be responsible for thoroughly testing

the system in order to identify any design flaws or bugs within

the system. If design flaws are found, the team shall modify the

design, implement the design changes, and retest the system. If

bugs are discovered, the team shall isolate and correct the bugs

and retest the system to verify proper operation.

5

Implementation of

production test

environment.

The PI and his staff will be responsible for packaging the test

software into an installer that can be easily distributed. The PI

and his staff will demonstrate to FDOT that the installer can be

used to easily create a production test environment on a “clean”

PC (Personal Computer) target (PC should only possess a clean

installation of Windows XP Professional).

Documentation. The PI and his staff will be responsible for creating support and

design documentation. This will include, but is not limited to, a

user manual for the final packaged system (including software

installation, operation, and hardware setup), flow charts

detailing software module interactions and software design

concepts, and comments within the source code to make it easy

for someone other than the programmer to understand how the

code works.

Training. At no additional cost to FDOT, the PI and his staff will be

responsible for providing up to 80 hours training to various

FDOT employees on how to install, configure, and operate the

final system, as well as comprehend the output from the various

tests developed. Training will be conducted at the FDOT-

TERL in Tallahassee, Florida.

6

IV. Results and Products

All the results and products of this research project are compiled and stored in the

accompanying compact disc (CD). The summary of results and products is presented in

Table 2.

Table 2: Results and Products

Area of Work Results and Products

Research and

review of past

efforts applicable to

this project.

Review of the paper titled Design of Traffic Controller

Automated Testing Tool, by Zhen Li, Ahmed Abdel-Rahim,

Brian Johnson, and Michael Kyte, published by Elsevier, 2008

[1].

Research, review,

and selection of

existing

Commercial-off-

the-shelf (COTS)

products required

for this project.

Report titled Evaluation of the McCain-NIATT Controller

Interface Device (CID II) “Hardware in the Loop” (Appendix

A).

System

requirements

development.

Testing software based on the functionalities of the NEMA TS2

Type-2 ASC [2].

System design and

design reviews.

A Laptop with proper ports and software.

A PCMCIA card by Quatech.

A device for the interface between an ASC and the Quatech card.

System

implementation.

A total of 20 automated testing programs covering all the

functionalities of the NEMA TS2 Type-2 ASC (in the

accompanying CD).

System testing and

validation.

Sample testing reports for prevalent traffic scenarios at an

intersection with an ASC.

Implementation of

production test

environment.

An executable C# Windows Console application to execute all

the automated testing programs: ASCAutoTester.exe (in the

accompanying CD).

Documentation. Automated ASC Testing Device User Manual (Appendix B).

Final report on CD in Web format.

Training. Initially scheduled and started on January 19, 2012 for twice a

week with one hour for each training session. Switched to three

times a week with one hour each from February 3 through

February 24, 2012.

The PCMCIA card by Quatech usually offers about 3 minutes of stable testing

environment till some synchronization problem causes the testing program to freeze.

Once the testing program freezes, it is necessary and time-consuming to reset the entire

system. A 3-minute run time is proven to be restrictive to 3 of the 20 testing programs:

Maximum Green Phase Timing Test

7

Maximum Yellow Phase Timing Test

Maximum Red Phase Timing Test

For these Maximum Phase Timing Tests, only one of the 8 phases can be set at the

maximum phase time while the rest of the phases are set at phase times shorter than the

maximum.

The manufacturer of the PCMCIA SDLC Card, Quatech, was contacted and had provided

assistance. However, they were unable to resolve the problem.

To overcome this limitation, two Senior Design Projects (with 3 undergraduates each)

have been commissioned in association with the Department of Electrical and Computer

Engineering at FSU to develop a system to replace the PCMCIA card by Quatech and the

interface between the card and an ASC for a more stable testing environment.

8

V. Conclusion

The FSU electrical engineering research team and key FDOT personnel have developed

an Automated Testing System for NEMA TS2 Type-2 ASCs. Unfortunately, ASC

manufacturers typically use proprietary software and hardware in the design of ASC.

There are discrepancies among the manufacturers in their interpretations of many of the

ASC specifications. Consequently, the Automated Testing Tools developed by

researchers so far are manufacturer dependent. The development and the eventual

adoption of NTCIP have demonstrated the possibility of an NTCIP based autonomous

testing system which is manufacturer independent. Additional work is needed to develop

a manufacturer independent autonomous testing system that combines the Automated

Testing System developed in this project and previous NTCIP test procedures developed

at FDOT Traffic Engineering Research Lab (TERL).

9

References

1. Zhen Li, Ahmed Abdel-Rahim, Brian Johnson, and Michael Kyte, "Design of traffic

controller automated testing tool," Transportation Research Part C 16 (2008) 277–293,

Elsevier

2. NEMA Standards Publication TS2-2003 v02.06, Traffic Controller Assemblies with

NTCIP Requirements.

10

Appendix A

Evaluation of the McCain-NIATT Controller Interface Device (CID II)

“Hardware in the Loop”

By

Tim Walton

Department of Electrical and Computer Engineering

Florida State University

 11

Table of Contents

I. Purpose of Evaluating

II. Pros and Cons from Evaluation

1. Pros

2. Cons

III. Questions

IV. FDOT-TERL Conclusion

 12

Product Evaluation Activity Report

Activity Period: December 10, 2009 – December 15, 2009

Subject: Evaluation of the McCain-NIAT Controller Interface Device

(CID II) “Hardware in the Loop”

FDOT-TERL: Jeff Morgan, (FDOT Project Manager)

 Dr. Leonard Tung, (FSU Principal Investigator)

Tim Walton, (FSU Research Associate)

CID Contacts: McCain Traffic Supply, Inc.

NIATT

University of Idaho

Ken Courage (University of Florida Professor)

13

I. Purpose of Evaluating

The McCain-NIATT Controller Interface Device (CID), also referenced as “Hardware in

the Loop,” can be very useful in the current research project, “Development of

Automated Testing Tools for Traffic Control Signals and Devices.” Researchers believe

that the device may increase the speed of the currently tedious and rigorous testing

process. The potential of the CID device is not fully known. Researchers are studying its

potential to develop an automated process that tests signal controllers. Ideally,

researchers will be able to obtain access to the programming code of this CID device and

expand upon its functions to a level that makes possible the development of an

automated testing system for ASC.

II. Pros and Cons from Evaluation

1. Pros

(a) Scripting by intervals and signals is made possible

(b) Timing of traffic signals can be adjusted

(c) Pedestrian phase signals can be made to an extent

(d) Intervals can be advanced

(e) Intersection layout is adjustable up to 4 lanes EW (East-West bound) and

3 lanes NS (North-South bound)

(f) Changeable cycles for varied scripted testing

(g) Presence of a logging and testing tool

2. Cons

(a) Pedestrian phases are either always high, or always low

(b) No true preemption, just timed interval advances

(c) No set proper output signals for logging and comparison mode

(d) Cannot program/code scripting, just built in function calls

(e) Intersection layout is only up to 8 phases with no apparent right turn leads

(f) No manual control settings such as FLASH mode

(g) No confliction allowed to test proper outputs such as a Flashing Test

(h) Bulky and a computer is needed to operate

(i) Not compatible with NEMA TS2 Type 1 signal controllers, only NEMA

TS1 and NEMA TS2 Type 2 via A/B/C connectors.

III. Questions

1. Is CORSIM (Corridor Simulation) linking a possible solution to advanced testing

procedures via HILSCI (Hardware in the Loop Simulator Component Integrator)?

2. Is the “right turn lead” phase possible to properly execute?

3. Is there a way to access/interface lower level programming of the CID device?

 14

4. What is truly meant by forcing off a signal or cycle when executing a script?

5. What exactly are TSIS (Traffic Software Integrated System) and TRF (Train

Simulator Traffic Pattern Format) files?

6. Is connection to a NEMA TS2 controller possible with modifications?

IV. FDOT-TERL Conclusion

It is apparent at this time that the McCain-NIATT Controller Interface Device (CID II),

aka “Hardware in the Loop,” is going to produce less than desirable automated testing.

Too many limitations are present currently. Further research can be done in regards to

some final proposed questions, but currently this device has proven to be a dead end in

aiding in the production of fully automated testing tools.

 15

Appendix B

Automated ASC Testing Device User Manual

By

Tim Walton

Department of Electrical and Computer Engineering

Florida State University

 16

I. Introduction

The user manual contains the following sections to help simplify the set-up and use of the

automated testing device for the Actuated Signal Controller (ASC):

Software: explains the software installations necessary for proper use of the testing device.

Hardware: explains the interface for the connection to an ASC.

Automated Tests: walk-through of how to execute each automated testing script.

Addendum: description of what is going on for each test.

II. Software

The testing software requires the additional installations of the scripting language software

Python, the editing software Notepad++, and the Quatech PCMCIA card drivers. The

procedures are outlined in the following steps.

Step 1: Install the software Python 2.5 on the desired laptop to be used for ASC automated

testing.

 Python 2.5 is a freeware and can be downloaded from user’s choice of website.

 Once it is installed, be sure to copy and paste the folder named ASC_Automated_Tests

which contains all automated testing scripts coded in Python and is separately supplied

in a compact disk (CD) into the directory of your hard drive, say C:\Python25.

Step 2: Install the software Notepad++ on the desired laptop.

 Notepad++ is also a freeware that can be downloaded from user’s choice of website.

 With Notepad++, all scripts coded in Python can be viewed and edited as needed. To

edit any automated testing script, just right-click and choose “Edit with Notepad++” to

view the code.

Step 3: Install the Quatech PCMCIA card drivers.

 The CD containing the drivers is pictured in Figure 1.

 17

Figure 1: Quatech PCMCIA Card Drivers CD

 The most up-to-date driver that stops the freezing issues is the “QuaSYS” system file

found in the folder named "Non-Freezing Driver" which is contained in the "Quatech

Folder."

 Drop this into the folder on the machine being used for testing,

C:\Windows\System32\Drivers.

III. Hardware

The testing hardware consists of the following (see Figure 7):

A laptop with proper ports and software,

A Personal Computer Memory Card International Association (PCMCIA) card by

Quatech, and

A device known as the Automated Testing Interface Unit (ATIU) for the interface

between an ASC and the Quatech card.

The installation procedures are outlined in the following steps.

Step 1: Acquire the ASC to be tested and an AC (Alternating Current) power cord for the ASC.

 Shown in Figure 2 is an Econolite traffic controller that was used during the system

development.

 18

Figure 2: Econolite Controller

Step 2: Locate the Automated Testing Interface Unit (ATIU) for the SDLC (Synchronous Data

Link Control protocol) connection.

 Shown in Figure 3 is the front view of the ATIU with a 25-pin port for the connection to

a PCMCIA (Personal Computer Memory Card International Association) card.

Figure 3: Front View of the Automated Testing Interface Unit

 Plug in the gray SDLC cable to the 15-pin Port 1 Interface on the front of the ASC.

 Plug in a DC (Direct Current) source via banana connectors with a constant voltage of 5

Volts. The connectors are located at the rear of the ATIU as shown in Figure 4. Set the

toggle switch in its neutral position, in the middle.

 19

Figure 4: Rear View of the Automated Testing Interface Unit

Step 3: Locate the Quatech PCMCIA SDLC card as shown in Figure 5.

Figure 5: Quatech PCMCIA SDLC Card

 Connect this card to the afore-mentioned 25-pin port in the front of ATIU and the laptop.

 Once this is recognized as a working device by the laptop, open up a Windows

Command Prompt.

o Firstly, type: “cd \Python25\ASC_Automated_Tests\Shared Files”

o Then type: “python setConfig.py”

o Finally, type: “python getConfig.py”

o This will prompt some lines of text to be displayed. Sequentially, make sure the

FrameBufferSizeRx field is set to 50, the NumFrameBuffersRx field is set to 10,

 20

the BaudRate is set to 153600, and the ClockRate is set to 1000000. Shown in

Figure 6 is the screenshot of a sample Console Window.

Figure 6: Screenshot of Windows Command Prompt to Begin the Test

 The final Set-Up should appear as in Figure 7. As shown in the figure, the ASC under

test is in the back. In front of the ASC, from left to right, are a 5-volt DC power supply,

the ATIU, and the laptop with the Quatech PCMCIA SDLC card.

Figure 7: Set-Up of the Testing Equipment with an ASC

 21

IV. Automated Tests

There are 20 automated tests developed for testing the functionalities of an ASC. All 20 tests are

compiled into an executable file named "ASCAutoTester.exe". The testing procedures are

outlined in the following steps.

Step 1: Open up the application: ASCAutoTester.exe

 This is found in the folder named ASC_Automated_Tests and is highlighted in the “Tile-

View” of the folder as shown in Figure 8.

Figure 8: Screenshot of the Subdirectory ASC_Automated_Tests

 Make sure the ASC has the "TS2 Type Cabinet" communication method enabled.

 Also, make sure the "MMU TO CU SDLC EXTERNAL START" option is disabled

under the settings in the ASC menu titled "SDLC PORT 1 CONFIGURATION."

 To verify functionality, choose the Virtual Cabinet option, Number: 21, as shown in

Figure 9.

 22

Figure 9: Screenshot Listing the Various Tests

 Choose 40 so the "Error and Fault-Free Virtual Cabinet" environment will run for forty

seconds to verify the "Set-Up" is correct for proper automated testing. If all the

minimum phase times are set, this allotment will clear any and all internal calls that are

placed at start-up due to this environment running a “Red Rest” state on both rings.

 The console will display “Program Is Now Running” while the "Virtual Cabinet"

environment is executing and then will notify when the program has ended as shown in

Figure 10.

Figure 10: Screenshot indicating the status of “Program Is Now Running”

 After this, the original header with all the tests listed as options will be displayed again.

Step 2: Configure the ASC to run the first nine automated tests. (Phase Timing Tests)

 Configure the ASC to be tested into a "Single-Ring Setup" with "No Phase

Compatibilities."

 Make sure the "SDLC Options for Port 1 Configurations" has "Terminal Facility BIU 1,"

"Terminal Facility BIU 2," "Terminal Facility BIU 3," and "TS2/MMU TYPE

CABINET" enabled. The rest are "No" and/or "Disabled" for now.

 Next, assign the appropriate amount of times "Minimum" or "Maximum" for the signal

head states of the phases to be tested (times for the red, the yellow, & the green signals).

 23

 Finally, set "Internal ASC Phase Recalls" active on all eight phases.

Step 3: Executing the Phase Timing Tests.

 All of the minimum and maximum timing tests are run in similar ways. Shown in Figure

11, as an example, is Test #1 for testing "Minimum Green Times" for all eight phases.

Figure 11: Screenshot Indicating the Completion of the Chosen Test

 After "1" is typed in, Test #1would prompt for parameters needed to run the test.

 For each of the specified phases, the defined allowable minimum green time of 1 second

is inputted.

 The test then runs and prompts upon completion to find the report in the same folder as

all the tests and current console application be used; “ASC_Automated_Tests”.

 The report will generate in the form of date/time followed by the test type:

“2012_01_31_13_49_32_MinimumGreen_TestReport”

 Shown in Figure 12 is an example of a successful execution.

 24

Figure 12: Screenshot of a Report Generated by the Minimum Green Phase Timing Test

 Whenever errors are present, the row (or phase) in issue is shown in bold. Shown in

Figure 13, as an example, is how the test report appears when the min times for the even

phases are set to be 5 seconds in the timing plans of the ASC rather than the 1 second.

 25

Figure 13: Screenshot of a Report Generated by the Minimum Green Phase Timing Test with Fails

 This is the same process for running all of the "Minimum Phase Timing Tests" and the

"Maximum Phase Timing Tests."

 Shown in Figure 11, as an example in running one of the single "Min/Max Phase Timing

Tests," is Test #9 for checking the Red Min/Max Time of a single phase.

Figure 14: Screenshot of a Single Min/Max Phase Timing Test

 After "9" is typed in, Test #9 would prompt for three parameters. Here, Phase 8 is

chosen to be tested, followed by the defined minimum red signal time of 0.1 seconds,

and finally a zero is typed in to choose that this will be verifying the “Minimum” red

time of the chosen phase.

 After the test is completed, in the same fashion as before and for all tests, the report is

generated in the same folder to appear as shown in Figure 15.

 26

Figure 15: Screenshot of a Report Generated by the Minimum Red Phase Timing Test

Step 4: Configure the ASC into a "Two-Ring Setup" with appropriate phase compatibilities.

 Remove the "Internal ASC Phase Recalls" active on all eight phases.

 This will be the "Controller Sequence Configuration" for the remainder of these tests.

 Note: "Barrier Mode" can simplify this process.

 Cycle power for this change to take effect.

 Run the "Virtual Cabinet" program to clear all internal calls that the ASC applies at

startup.

Step 5: Vehicle Call Coordination Test.

 Make sure that the "Detector BIU #1" is enabled under "SDLC Options."

 Choose Test #10 along with desired test parameters.

 Shown in Figure 16, as an example, is the test in which the even phases and then the odd

phases are being tested in sequence.

Figure 16: Screenshot of the Vehicle Call Coordination Test

 The report generated should appear as shown in Figure 17.

 27

Figure 17: Screenshot of a Report Generated by the Vehicle Call Coordination Test

Step 6: Pedestrian (PED) Call Coordination Test.

 Assign the four pedestrian signals to Load Switches 13-16 or 9-12.

 Make sure Phases 2, 4, 6, & 8 have a "WALK" and "PED CLR" time of 1 second.

 Choose Test #11 along with desired test parameters.

 Shown in Figure 18, as an example, is the test running the four PED calls in sequential

order.

Figure 18: Screenshot of the Pedestrian Call Coordination Test

 The report generated should appear as shown in Figure 19.

 28

Figure 19: Screenshot of a Report Generated by the Pedestrian Call Coordination Test

Step 7: Preemption Tests.

 Enable the first 6 preemption plans to have a 10 second duration time with an “X”

marked in the corresponding phase vehicle call. ("DWEL VEH" field for example).

 This means that for

o Plan 1: The “X” would be on Phase 1,

o Plan 2: The “X” would be on Phase 2, …, and

o Plan 6: The “X” would be on Phase 6.

 Choose Test #12 along with desired test parameters.

 Shown in Figure 20, as an example, is the test running all six preemption plans in

sequential order.

Figure 20: Screenshot of the Preemption Call Coordination Test

 The report generated should appear as shown in Figure 21.

 29

Figure 21: Screenshot of a Report Generated by the Preemption Call Coordination Test

 Notice there is always one extra message frame sent, via SDLC when it comes to the

execution of a preemption plan, allotting for the extra tenth of a second.

 Preemption Priority Test:

o Choose Test #13. (No Test Parameters Required)

o Shown in Figure 22, as an example, is what the console displays when

running this test.

Figure 22: Screenshot of the Preemption Priority Test

 The report generated should appear as shown in Figure 23.

 30

Figure 23: Screenshot of a Report Generated by the Preemption Call Coordination Test

 This test was run on a controller that truncated the final highest priority plan from

running its full 10 seconds after trumping Priority Plan 2. This is in BOLD showing the

noted error and duration of seven seconds (plus the same extra tenth a second as before.)

Step 8: FLASH Test.

 Make sure your load switch assignments are made with the first eight being vehicle

phases and Load Switches 9 through 12 being the "Overlaps."

 Now, in the FLASH section make all the signals red except make the straight approaches

on the major street yellow (i.e. Phases 2 & 6.) This is often under the Automatic Flash

section sometimes abbreviated as AUT.

 Finally, mark the "Trigger" in the "Load Switch FLASH" section (ex. abbr. TGR) for

Switches 1, 2, 5, 6, 9, & 11 with an enabling “X”.

 Choose Test #14. (No Test Parameters Required)

 Shown in Figure 24, as an example, is the test being run.

Figure 24: Screenshot of the ASC Flash Test

 The report generated should appear as shown in Figure 25.

 31

Figure 25: Screenshot of a Report Generated by the ASC Flash Test

Step 9: Overlap Test.

 Set the load switch assignment for Load Switch 9 through 12 to be the "Overlaps."

 Now, set first vehicle overlap (Load Switch 9 or A) to have Phases 2 & 5 included, the

second (Load Switch 10 or B) to have Phases 4 & 7 included, the third (Load Switch 11

or C) to have Phases 1 & 6 included, and the fourth (Load Switch 12 or D) to have

Phases 3 & 8 included.

 Choose Test #15. (No Test Parameters Required)

 Shown in Figure 26, as an example, is the test being run.

Figure 26: Screenshot of the Overlap Configuration Test

 The report generated should appear as shown in Figure 27.

 32

Figure 27: Screenshot of a Report Generated by the Overlap Configuration Test

Step 10: Channel Mapping Test.

 This test allows for the PED load switch assignments to be before or after the Overlaps.

 Choose Test #16. (No Test Parameters Required)

 Shown in Figure 28, as an example, is the test being run.

Figure 28: Screenshot of the Channel Mapping Test

 The report generated should appear as shown in Figure 29.

 33

Figure 29: Screenshot of a Report Generated by the Channel Mapping Test

Step 11: Flashing Yellow Test.

 Set the load switch assignment for Load Switch 9 through 12 to be "Overlaps" and Load

Switch 13 through 16 to be "PED."

 Enable the Flashing Yellow Operation to be driven by the overlap or the pedestrian load

switches. Make sure the proper protected and permissive phases are set as specified by

the NEMA Standard.

 Choose Test #17 along with the desired test parameter.

 Shown in Figure 30, as an example, is the test being run with "PED Driven Flashing

Yellow Operation".

Figure 30: Screenshot of the Flashing Yellow Test

 The report generated should appear as shown in Figure 31.

 34

Figure 31: Screenshot of a Report Generated by the Flashing Yellow Test

Step 12: Stop Time Test.

 Make sure "SDLC STOP TIME" is enabled under the settings in the "SDLC PORT 1

CONFIGURATION" menu of the ASC.

 Choose Test #18. (No Test Parameters Required)

 Shown in Figure 32, as an example, is the test being run.

Figure 32: Screenshot of the Stop Time Test

 The report generated should appear as shown in Figure 33.

 35

Figure 33: Screenshot of a Report Generated by the Stop Time Test

Step 13: ASC Phase Startup Test.

 Make sure "MMU TO CU SDLC EXTERNAL START" is enabled under the settings in

the "SDLC PORT 1 CONFIGURATION" menu of the ASC.

o Note: Be sure to disable this after running the test.

 Choose Test #19. (No Test Parameters Required)

 Shown in Figure 34, as an example, is the test being run.

Figure 34: Screenshot of the ASC Phase Startup Test

 The report generated should appear as shown in Figure 35.

Figure 35: Screenshot of a Report Generated by the ASC Phase Startup Test

 Remember to disable “MMU TO CU SDLC EXTERNAL START”!

Step 14: Coordination Test.

 Make sure the ASC is put into an action plan running the following coordination pattern:

o Use Split Pattern: 1

o Split Sums and the Cycle Time: 40 seconds.

 36

o Offset Value: 0 seconds.

o Actuated Coordination: YES

o Actuated Walk Rest & Phase Re-service: NO

o Split Preference Phases: (Values for Split Fields per Phase)

 Phase 1 = 5,

 Phase 2 = 20,

 Phase 3 = 5,

 Phase 4 = 10,

 Phase 5 = 5,

 Phase 6 = 20,

 Phase 7 = 5,

 Phase 8 = 10

 Choose Test #20. (No Test Parameters Required)

 Shown in Figure 36, as an example, is the test being run.

Figure 36: Screenshot of the Coordination Test

 The report generated should appear as shown in Figure 37.

Figure 37: Screenshot of a Report Generated by the Coordination Test

Step 15: Recollection

 Take a moment to appreciate the old ways of doing things and jump for joy that you

didn’t have to use a Suitcase Tester!

 You’re welcome.

 37

Addendum

The description of what is going on for each of the automated tests is given in the following.

 Test #1 - Test #9 “Phase Timing”:

o These programs all validate the minimum and maximum phase times. The ASC

is to be in a "Single Ring Configuration" with internal "Vehicle Recall" on all

phases for each of these tests. The Green, Yellow, and Red Maximum/Minimum

Phase Timing Tests allow the user to specify signal times per phase and to

monitor the actual illumination time of each for a comparison. The Single Min

(or Max) Phase Timing Tests function in the same way, but enable the user to

specify a specific phase to test rather than waiting for all eight to run. This is

ideal for testing phases of interest when running high phase time counts; ex. 255

seconds (4.25 minutes). Upon completion, the Rich Text Format (RTF) file is

created showing the results from the test.

 Test #10 “Vehicle Call Coordination”:

o This program verifies vehicle calls are serviced properly and in the order they are

placed. Execution runs for the eight user-specified phases (1 through 8) verifying

vehicle calls are made and serviced in the order they are placed. Upon

completion, the RTF file is created showing the results from the test.

 Test #11 “Pedestrian Call Coordination”:

o This program verifies pedestrian calls are serviced properly and in the order they

are placed. The user passes in four parameters specifying four desired pedestrian

phases (2, 4, 6, or 8) to service these pedestrian calls in the order passed. Upon

completion, the RTF file is created showing the results from the test.

 Test #12 “Preemption Call Coordination”:

o This program allows the user to pass in any order of the first six different types

of preemption calls and verifies they are serviced in that order. Simplified

preemption plans of having each priority run its corresponding phase number for

10 seconds are configured in the controller first for validation of their execution.

For example, priority one runs only Phase One for ten seconds. An extra

message was found each time to get the plans started; hence the 10.1. Upon

completion, the RTF file is created showing the results from the test.

 Test #13 “Preemption Priority”:

o This program essentially runs Preemption calls one after another in descending

order beginning with priority 6. In doing this, the program monitors and verifies

each higher priority trumps the lower after a second of running; plus the message

for starting the plan. The Highest Priority is then allowed to run until completed.

The currently tested controller failed the test due to running this plan 3 seconds

less than programmed after trumping the preemption plan with the lower priority

2. Upon completion, the RTF file is created showing the results from the test.

 Test #14 “FLASH”:

 38

o With the appropriately defined ASC FLASH sequence programmed into the

controller, this program executes the sequence by ceasing replies from one of the

required-reply messages of the MMU (Malfunction Management Unit.) This

directly causes the ASC to throw up its SDLC fault flag and drive this FLASH

sequence through the load switches. This sequence is then monitored for proper

functionality and correctness. Upon completion, the RTF file is created showing

the results from the test.

 Test #15 “Overlap”:

o The user needs only to configure the ASC to run minimum green and yellow

timing plans for the main eight phases. This program then has Overlaps nine

through twelve tested to run in a constant green state across its two enabling

phases (Even though one will time out before the other) and then return to its red

state accordingly. The final report created shows that exactly 50 SDLC messages

(Sent every 1/10 a second) were sent for the appropriate overlap phase to run

green for 5 seconds and then 30 SDLC messages for it to run yellow for the

defined minimum yellow time of 3 seconds. Upon completion, the RTF file is

created showing the results from the test.

 Test #16 “Channel Mapping”:

o This program verifies the Channel Mapping Configurations seen on the SDLC

Bus match those of the user sets via the input panel of the ASC. This program is

executed using the vehicle and pedestrian call functionalities. Upon completion,

the RTF file is created showing the results from the test.

 Test #17 “Flashing Yellow”:

o This program monitors the Flashing and Solid Yellow times for phases of desired

functionality with a focus on their timing compared to the compatible Green and

Yellow phases. The test is designed for a Two Ring implementation. This test

will require one input from the user denoting whether the flashing yellows are to

be driven from channels 9-12 (input ‘0’) or channels 13-16 (input ‘1’). This will

not only account for overlap or pedestrian driven flashing yellows, but also either

allowable channel configuration options for both. Upon completion, the RTF file

is created showing the results from the test.

 Test #18 “Stop Time Test”:

o This program places calls to the ASC and then implements an external

“Stoptime” signal to freeze the controller’s current state. It is then verified all

activity and timing is properly resumed once released. An additional “Stoptime”

signal is sent specific to Ring 1 to verify it holds phase timing while Ring 2

advances one phase and proceeds to wait on it. Upon completion, the RTF file is

created showing the results from the test.

 Test #19 “ASC Phase Startup”:

o This program sends the SDLC driven “Ext. Start” signal to reboot the phase

operations of the ASC. Upon the reception of this signal, it is then verified that

all phases are cycled through. Upon completion, the RTF file is created showing

the results from the test. Specific phases will be shown in bold if they are not

executed.

 39

 Test #20 “Coordination”:

o This program brings the controller out of a faulted state and allows for the Local

and System cycle times to synchronize with one another. Then, it is verified that

a pair of calls are handled on a following cycle, while another set of calls made

during the handling of these previous calls are handled immediately after them.

Finally, another set of vehicle calls are placed as soon as the controller returns to

the major streets to show how they have to wait the longest period of time to be

serviced on the next cycle. Upon completion, the RTF file is created showing the

results from the test.

